In [1]:
import pandas as pd
import seaborn as sns

df = sns.load_dataset('titanic')
print(df.shape)
df.head()
(891, 15)
Out[1]:
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True
In [2]:
mask = (df['age'] >= 10) & (df['age'] < 20)  # 10대
mask.value_counts()  # 아이템별 개수 확인
Out[2]:
False    789
True     102
Name: age, dtype: int64
In [3]:
df_teensage = df.loc[mask, :]
print(df_teensage.shape)
df_teensage.head()
(102, 15)
Out[3]:
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
9 1 2 female 14.0 1 0 30.0708 C Second child False NaN Cherbourg yes False
14 0 3 female 14.0 0 0 7.8542 S Third child False NaN Southampton no True
22 1 3 female 15.0 0 0 8.0292 Q Third child False NaN Queenstown yes True
27 0 1 male 19.0 3 2 263.0000 S First man True C Southampton no False
38 0 3 female 18.0 2 0 18.0000 S Third woman False NaN Southampton no False